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FUNDAMENTAL FREQUENCY OF TENSIONED FREE–FREE BEAMS

H. P. W. G

Faculty of Science and Technology, Griffith University, Nathan, Queensland 4111, Australia
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Recently, Liu et al. [1] investigated the frequencies and mode shapes of free-free beams
under tensile axial loads. Of particular interest was the discovery of a previously
unreported fundamental frequency which increased from zero as the tension increased
from zero. Some numerical values were presented, as well as a graph for a range of small
tension parameters and some approximate third-order polynomial expressions (obtained
from a least squares fit) for larger tension parameters.

The main purpose of this paper is to derive, directly from the characteristic frequency
equation itself, a simple explicit approximate analytical formula for the fundamental
frequency parameter for small tension, thereby providing a much better estimate of the
fundamental frequency than that obtainable from the graph of Figure 3 in reference [1].
Some indication of a possible reason why such a mode had hitherto escaped notice is also
elicited. A similarly simple formula is derived for large tensions. The crossover occurs with
less than 5% error in either formulae.

The characteristic equation for planar transverse vibrations of a free-free uniform
Euler–Bernoulli beam of length L, cross-sectional area A, mass density r and flexural
rigidity EI under constant axial tension T is given in non-dimensional form in [1] as

2b6[1−cosh (a1) cos (a2)]−k2(k4 +3b4) sinh (a1) sin (a2)=0, (1)

where

a1,2 = (2k2/2+ (k4/4+ b4)1/2)1/2, (2)

with

b4 = [rAL4/(EI)]v2, k2 = [L2/(EI)]T. (3)

Here v is the radian frequency of vibration, and the tension magnitude is characterized
by [1]

g= k2/p2. (4)

If tension T=0, b=0 is a solution, i.e., v=0. Now a solution for the lowest frequency
parameter b0 in terms of small tension parameter k may be sought by making series
expansions of the terms in equation (1) under the assumption b=O(k) (i.e., b2 =O(g) or
v=O(T)) which appears natural in view of the form of equations (2). However, this leads
to the equation k4 +4b4 1 0 which is consistent as regards orders of magnitude but which
implies k=0= b, i.e., no positive solution. This may be part of the reason why the
positive fundamental frequency for positive T had eluded notice.

Numerical computations (see Table 1), and the form of the graph of b2
0 versus g in

Figure 3 in reference [1], suggest that in fact b2
0 may rather behave like the square root
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of g (i.e., v like zT). Thus in equation (1) the assumption is now made that b=O(zk),
so k=O(b2), and expansions are made for small values of these parameters. Greater
care must now be taken in collecting small terms of given order. In particular, it is found
that

a1,2 = b2 (1/4)k2/b+O(b5). (5)

This procedure then yields b2 1 (z(12))k, yielding the following explicit analytical
approximation for the fundamental free-free frequency parameter for small tensions
(small g):

b2
0 = (2z3p)zg2 10·882796zg. (6)

This is the main result of this paper, and replaces the graph of [1] with an explicit formula.
Even up to g=1, the error in equation (6) is less than 2%.

For large tensions, the work of Bokaian [2] for some modes again suggests a square
root type of increase, although there the fundamental free-free mode is missing (as stressed
in [1]) and there is an additive constant within the square root since those modes are
positive for all tensions. In any case, numerical computations on equation (1) here again
imply a square root type of relationship. Accordingly, the ansatz b2 =O(zg), i.e.,
k=O(b2), v=O(zT), is again made in equation (1), now for large parameters. Then
a1 1 k and a2 1 b2/k. Neglect of the smaller order first term in equation (1) then gives
sin (b2/k)=0. Thus for large tensions, the approximation is

b2
0 = p2zg1 9·8696044zg. (7)

This is in fact the corresponding string frequency relation (c.f., [2]). The expressions (21),
(22) in [1] do in general give more accurate results, but at the expense of considerably
detailed coefficients and less direct motivation.

Table 1 shows some exact values of dimensionless frequency parameter b2
0 , for

dimensionless tension parameter g covering a whole range, from small to large, in powers
of 10, together with both approximations (6) and (7) and their percentage errors. Also
included are the results for g=4 which corresponds to the ‘‘crossover’’ error of 5%.

T 1

Frequency parameter b2
0 (c.f., equation (3)) for tension parameter g (equation (4)) obtained

from equation (1)

g Exact Equation (6) % error Equation (7) % error

0·000001 0·010882796 0·010882796 2·4×10−6 0·009870 −9·3
0·00001 0·034414415 0·034414423 2·4×10−5 0·03121 −9·3
0·0001 0·108827706 0·108827962 2·4×10−4 0·09870 −9·3
0·001 0·344136148 0·3441442 2·4×10−3 0·3121 −9·3
0·01 1·08802453 1·088280 2·3×10−2 0·9870 −9·3
0·1 3·43355582 3·44144 2·3×10−1 3·121 −9·1
1·0 10·6790062 10·8828 1·9 9·870 −7·6
4·0 20·7539369 21·7656 4·9 19·739 −4·9

10·0 32·1399000 34·414 7·1 31·210 −2·9
100·0 99·1255883 108·828 9·8 98·6960 −4·3×10−1

1000·0 312·254025 344·144 10·2 312·1043 −4·8×10−2

10000·0 987·009159 1088·280 10·3 986·9604 −4·9×10−3
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These results may now be summarized as follows:
To within 5% (and much less for g small, or large):

if gE 4, b2
0 1 2z3pzg1 10·8828zg; (8a)

if gq 4, b2
0 1 p2zg1 9·8696zg. (8b)

The true values lie between the two estimates, which are very good for small and for large
g respectively.

Insofar as this zeroth, fundamental, mode may be of considerable practical importance
[1], the exceedingly simple formulae (8) allow a rapid estimate, especially accurate for very
small (or very large) tensions, to be made of the lowest solution to the complicated
frequency equation (1).

For rough estimates, either of (8a) or (8b) actually gives accuracy to within about 10%
over the whole range. Evidently a more accurate formula for medium values of g could
be derived by taking expansions to the next order, but this would detract from the above
simplicity.



1. X. Q. L, R. C. E and H. R. R 1996 Journal of Sound and Vibration 190, 273–282.
Vibration of a free-free beam under tensile axial loads.

2. A. B 1990 Journal of Sound and Vibration 142, 481–498. †Natural frequencies of beams
under tensile axial loads.

†(There appear to be errors in sign in the boundary conditions for the free–free case in Table 1 on p. 483
of [2].)


